Transmission Through Bandlimited AWGN Channels

HTE - 24.09.2012

1. Definition of a Bandlimited Channel

Previously we assumed that the communication channel was unlimited, i.e. all pass channel
expressed as

C(f)=1, c(t)=6(t), &(t) : Time delta function (1.1)

Fig. 1.1 illustrates C(f) and c(l) of an unlimited channel as defined in (1.1). In practice the

frequency response C(f)and the impulse response c(t) would hardly be like (1.1). More realistic

plots are given in Fig. 1.2.
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Fig. 1.1 Frequency and time responses of an unlimited channel.
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Fig. 1.2 Frequency, time and phase responses of a typical bandlimited (bandpass) channel.

As seen from Fig. 1.2, the frequency response of a the bandlimited channel, C(f) is zero when
|f| >W . And C(f) acts like a low pass filter within |f| < W . The same can also be detected from

c(t) of Fig. 1.2.

Assume that a transmitter send a time signal of g, (l), to a communication channel whose time and

frequency responses are C(f) and c(t) , at the output of the channel we will obtain in time domain

W)= [ e(c) g, (t—1)dr =c(r)rg, (1) (12)
Alternatively, in frequency domain, the output will be
H(f)=C(f)G,(f) (1.3)

where H(f) and G, (f) are the Fourier transforms of h(t) and g, (t) At receiver we pass the

received signal plus noise, i.e. h(t)+n(t)though a matched filter (MF) whose frequency response is

G, (f)=H (f)exp(—2,jz/T.) (1.4)

T indicates the sampling instance. So after sampling the output of the matched filter at =17
° 2
v (1=1)= [|H(S) df =¢, (1.5)

where &, is the energy in the channel output signal h(t). Noise has a spectral density of

S (f) =N, /2 atinput to MF, which means at the output of MF, the spectral density will be

S,()=|H (1) S, (f)=|H (f)] N, /2 (1.6)

So the noise power can be obtained by integrating (1.6) over the whole frequency spectrum (actually
this will be limited to the bandwidth of the matched filter)
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By setting the signal power to the square of (1.5), i.e. P = g,f, we can find the signal to noise ratio

(SNR), at the output of the matched filter as

(SNR) _[i]_ﬂ_g—;_ 2¢, (1.8)
° (N) P gN,/2 N ’

0

(1.8) is the same as the obtained previously except &, was replaced by &, . In the present case &,
would be the energy in g, (t) or G, (f) . In view of (1.3) and C(f) <1 forall f, we deduce that

g, < &, . This means a fall in the signal to noise ratio for the case bandlimited channel. Furthermore

(1.4) implies that the design of the matched filter can no longer be based on transmitted signal only,
but it also requires the knowledge of channel characteristics.

Example 1.1 : A transmitted signal g, (t) is given by

l 1+cos 2—”[1,‘—2] , 0<t<T
g, (1)=12 T 2 (1.9)
0 elsewhere

g (t) passes through a channel whose response is as shown in Fig. 1.3. Find the ratio of ¢, /¢,

against the product of signal duration and the channel’s bandwidth.

Solution : By the Fourier transform of (1.9), we get G, (f) as

_ T sin(zfT)
2 fT(1- 1T

G, (f) )exp(—jﬁﬂ):gMexp(—jﬂﬂ) (1.10)

Using (1.3), we obtain the output of the channel as

H(f)=C(f)G (/)

_[G ) = (1.11)

0 otherwise

Channel response, C(f), g, (t) and ‘GT (f)‘2 /T? are plotted in Fig 1.3
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G, (f) /T

HTE Eylil 2012 Sayfa 4



lG(nlZ 7

lj\'i
|

[ [
4T 3T 2T AT (0] YT 27T 3T 4T

G, (f) /1

d) Exploded view of the spectrum of transmitted signal ,
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Fig. 1.3 The plots of C(f), g, (t) and ‘GT (f)‘ /T" in Example 1.1.

Note that due to side lobes of ‘GT (f)r /T? being much smaller than the main lobe, we have had to

shown an exploded view in Fig. 1.3d. Now the signal component at the output of the filter matched

to H(f)is

1 " sin’(zfT T " sin’(ra
2 f 2 _( 2 2)2 df = 2 f 2 E 2)2
4r ,Wf(l fT) 4r —WTa(l 0{)

%=ﬁ@UW#: da  (1.12)

(1.12) applies to the situation where the channel bandwidth is limited to . In the case of unlimited
channel however, (1.12) will be

7 2oL Gosin'(afT) T Gosin’
o L

<”"i)zdoz (1.13)
o

By taking the ratio of &, /&

s

, it is possible to estimate how much of the transmitted signal energy will

reach the receiver for a given bandwidth. From (1.12) and (1.13) we can write

wT

Sin2<72'05)
—
g, \v]V‘TCZZ(l—O!Z)Z “
—=— (1.14)
€, f sin (ﬂa) Ja
700052(1—052)2

As understood from (1.14), it more reasonable to examine the variation of &,/¢&, against the

dimensionless quantity WT rather than the absolute bandwidth 7 . This is done in Fig. 1.4.
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Fig. 1.4 The variation of the normalized energy in band limited channel against the product of
bandwidth and symbol duration.

As can be seen from Fig. 1.4, with the given transmitted signal of (1.9) and the rectangular
bandlimited channel response, it is possible to pass 100 % of the signal power nearly beyond the
values of WT > 2. This is twice the bandwidth requirement for a symbol duration of 7". Normally
we expect to assign a bandwidth of 1/7 to a symbol duration of 7'. In summary we need better
designed signal shapes that the one given in (1.9).

It is important to appreciate that the above phenomena is purely due to bandlimiting action of the
channel. There is no harm in modelling bandpass channels as low pass filters, since the shift in the
central frequency has no effect on our analysis.

Fig. 1.5 shows the bandlimiting and ISI effects of a when rectangular g, (t) passes through unlimited

and bandlimited channels respectively.

C(f)
4 - h ( t) - output
gT( t) - input 1 1 Unlimited channel t (1) P
1 1
> > f > t
C(f
R (£) - nput ‘(‘ ) h ( t) - output
g,(t)-inpu 1 Bandlimited channel
1 1
. I8
t
> > f }
0 T -w 0 w 0 T 2T

Fig. 1.5 The effect of bandlimited channel on a rectangular g, (t)
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As seen from Fig. 1.5, if we try to pass a rectangular g, (t) through an unlimited channel, then the
output h(t) is an exact replica of the input to g, (t) Note that the time delay through the channel

is omitted here. On the other hand, pass the same rectangular g, (t) through a bandlimited channel

creates two effects

e Intersysmbol interference (ISI) occurs, which means that the falling edge of g, (t) extends

into the next symbol interval of T <t <2T', thereby making the correct detection of the
symbol there more difficult.
e Due to ISI, part of the energy of the symbol in the interval 0 <f¢ <T is lost, again causing

difficulties in the correct detection of the symbol in the interval of 0 <¢ <T'.

Exercise 1. 1: Convert g, (t) in (1.9) into a rectangular pulse of

1, 0Z5¢<T

g (r)z{ (1.15)

0 elsewhere

Calculate and plot ¢, /¢, for the rectangular g, (t)of (1.15). Compare your results with those of

Example 1.1. Note that for this exercise, you can benefit from the m code ISIExpl.m on the course
web page. This m code illustrates what happens to a rectangular transmitted signal, i.e. the case of
(1.15) if the channel is unlimited, bandlimited (quite wide wide, wide and narrow) and RC low pass.

Exercise 1. 2: From Proakis text book and solution manual, after studying the problems and the
solutions of 8.2 and 8.9, design ISIExpl.m, so that the channel is a low pass filter as defined in
problem 8.9 of Proakis text book, then run ISIExp1l.m to see if you get the same results as given in the
solution of problem 8.9.

2. Transmission of Binary ASK Signals Through Bandlimited Channels

The block diagram of the ASK system in question is given in Fig. 2.1.

Transmitter filter v(t) Channel h(t) r(t) | Receiver filter y(t) y (KT)
Detector

—) > Sampler —
Message gT(t)'GT(f) c(t), c(f) gR(t)'GR(f) Demodulated

N signal
signal 9

y

Noise

n(t)
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Fig. 2.1 Block diagram of the analysed communication system

We assume that the signal at the output of the transmitter filter is

00

v(t)=>" ag,(t—nT) 2.1)

n=—o0o

Where, T'is the symbol duration, {an}contain the sequence of amplitude levels assigned to the M
ary ASK in question. For instance for M =8, {an} might simply be {an}: {:l: 1, £3, &5, :l:7}
. g (t) is the impulse response of the transmitting filter or the shaping waveform furnished by the

transmitter filter to the ASK signal to be transmitted. Note that during the analysis of unlimited
channels, it was sufficient to consider one (any) symbol interval to arrive at results. Here because of
the presence of bandlimiting, symbols will smear out to neighbouring time intervals. Therefore we
take the message signal in the format of (2.1). At the output of the channel, we will have

00

r(t)="3" ah(t—nT)+n(t) (2.2)

n=-—00

where h(t) = c(l)*gT (t) represents the cascaded impulse response of the transmitter filter and
the channel. n(t)is additive white Gaussian noise (AWGN). The received signal of (2.2) will pass

through a receiver filter whose time response g, (t) is matched to h(t), thus the output of the

receiver filter will be

00

y(t):n;xanx(t—nT) +n(t) (2.3)
where
x(t) = h(t)*gR (t) =g, (t)*c(t)*gR (t) , 77(1‘) = n(t)*gR (t) (2.4)

Hence and combined impulse response of the transmitter filter, the channel and the receiver filter,

while Iy(t) is the AWGN at output of the receiver filter. After sampling at t = mT instance, we have

00

y(mT)= 3" ax(mT —nT) +n(mT)

n=-—o00

y, = ianxm_ﬂ +n, ym:y(mT) , xm_n:x(mT—nT) , nm:n(mT)

=xa,+> ax, B +n, ,m=0, £1, £2-- (2.5)

0""m
In (2.5), the second line is just a short hand notation of the first line, while on the last line, we have
singled out the symbol n =m as the first term since that is the symbol we wish to recover at the
sampling instance of t = mT . The middle term on the last line of (2.5) is the undesirable effect of
other symbols at the chosen sampling instance and causes what is called intersymbol interference
(ISI). The last term here represents noise. As seen from the term on the last line of (2.5), the
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transmitted symbol @, is scaled by the parameter X, as a result of passing through the channel and
receiver filter (matched to channel output, h(t) ), where from (1.3) — (1.5) and (2.4) we can deduce

X, to be

X, = f K (1) dt = f (/) df = [|G, (£ |c(f) df =e, (2.6)

By appropriately designing transmitter and receiver filters in Fig 2.1, it is possible to eliminate the ISI
term, i.e. the middle term on the last line of (2.5). This we shall do next.

3. Signal Design for Zero ISI

We rewrite (2.5) as follows

v, zx(O)am + zx: anx(mT—nT) +77(mT) 3.1)

n=—o0
n=m

To eliminate ISI, the necessary and sufficient condition is that x(mT—nT)zO for n=m and

x(O) = 0. Assuming that we set x(O) =1, then we can reduce this condition to

x(nT)= {:) =9 (3.2)

n=0

According to Nyquist theorem, for the condition in (3.2) to be satisfied, it is necessary that
Z X[f+ ] (3.3)

Below, we give the proof that if (3.3) is valid, then (3.2) will be satisfied.

Initially we take the formal definition of inverse Fourier transform for x(t) which is

f X (f)exp(j2xft) df (3.4)
At the sampling instance of t = nT , (3.4) will become
fX exp ]27zfnT) df (3.5)

The infinite integral in (3.5) can be broken into 1/ T (frequency) intervals such that
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x(nT)= > f X[f+%]exp(j2ﬂ'fnT) df

n=-00_1/2T
1/21 s
= [ Z(f)exp(2zfnT) df . Z(f)= ZX[/H—%J (3.6)
—-1/2T n=-—00
As seen, the function Z(f) is a periodic with a period of 1/T . Hence it will have a Fourier series in
the form of
~ /217
Z(f)=> zexp(j2xfuT) , z,=T [ Z(f)exp(—j2z/mT) df (3.7)

n=-cc —1/2T

Comparing (3.7) with (3.6), we get
z, =Tx(—nT) (3.8)

Now the necessary condition of (3.2) for zero ISI will be satisfied if in (3.9)

z =

n

(3.9)

T n=0
0 n=0

Substituting this into the summation (i.e. the first expression) of (3.7) and using the second
expression of (3.6), we get

Z(f)=T= fjx[f+3] (3.10)

This completes our proof. It is instructive to state that the condition in (3.10) essentially means that

the infinite sum of spectrums of X(f) at shifted periodic frequency intervals of n/T should be

equal to the symbol duration 7" (constant).

Now we take a channel like the one given in Fig. 1.2, that is C(f)zO, when |f|>W. Then
X(f)zGT<f)C(f)GR<f) will extend up to |f|:W, but will be zero for |f|>W. In such

circumstances, it is possible to identify three types Z(f) depending on the relations between 7" and

2w

1) 1/T>2Wor (1/T)/(2W> >1. In this case, the ends of the shifted periodic spectrums of

X(f) cannot touch each other, thus there is no possibility of satisfyingZ(f) =T . This

situation corresponds to symbol duration being too short, so essentially more channel
bandwidth than the one provided is required to achieve a zero ISI condition. The other
interpretation is that the signal bandwidth is larger than the bandwidth offered by the
channel (see Figs. 3.1a).
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2) 1/T=2W or (I/T)/(ZW) =1. In this case, the ends of the shifted periodic spectrums of
X(f) begin to touch each other, but they have to be rectangular in shape so that

Z (f) = T is satisfied. Thus

T fl<w
X(f)= 17 _ (3.11)
0 otherwise
Taking the inverse Fourier transform of X(f) , we get
Aqusmci] (3.12)
T

Although the zero ISI condition is satisfied by the sinc function given in (3.12), some
disadvantages exist such that the tails of a sinc function does not converge rapidly.

3) 1/T<2W or (1/T)/(2W)<1. In this case, the shifted periodic spectrums of X(f)

overlap, so there are many choices ofX(f), consequently x(t). Note that 1/7 <2W

means that our signal can safely be accommodated within the channel bandwidth.

Plots of Z(f)for the above examined cases are given in Fig. 3.1 (copied from Proakis 2002).
Additionally our own plots, where the different ratios of(l/T)/(ZW)are shown, are also added as

the first illustrations in Fig. 3.1.

Case of signal bandwidth being larger than bandwidth of the bandpass channel ,(1/ T)/(2W)>1
A

> f
~05/T 0 05/T
| “X(f)=GT(f)C(f)GR(f) |

v
~h
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a) Plot of Z(f)for 1/T >2W or (l/T)/(ZW)>1

Case of signal bandwidth being equal to bandwidth of the bandpass channel ,(1/ T)/(2W) =1

A

“05/T 0 0.5/T
| X (N)=G () C(f) Gp(f) |
|
-w 0 w
Zif)= 1‘“! ¢ )
20 0 1 1 ]
T W= 3 T

b) Plot of Z(f)for /T =2W or (1/T)/(2W)=l
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Case of signal bandwidth being smaller than bandwidth of the bandpass channel , (1/ T)/(2 W) <1

[
;f

0 ‘
X(N=G(NC)GS) J
'= f
-w 0 w
= i ﬂ". f
Zi j"_1=|§,1-5 l-i'f + T::
X T T
| |
XX X IX T X X

| |
| | | | |
1 Ve 1 1 W I
T R it r

c) Plotof Z(f)for 1/T <2W or (1/T)/(2W)<1
Fig. 3.1 Plots of 1/T,2W and Z(f) for different ratios of (I/T)/(ZW).

A particularly popular choice for X(f) is the raised cosine spectrum denoted as X (f) and given
by

[ l—«

r 0§|f|§7

_ T al(y 4 l-«a l—« I+«
X.(1)=13 {HCOS » [Ifl e } - SHls—— (3.13)

I+a

" >3

where « is the rolloff factor and ranges in 0 < a <1. It is important to realize that on the last line of

(3.13), the reason for X (f) becoming zero is due to channel response being zero outside of |W|

Thus effectively for an arbitrary value of ¢ in the range of zero to unity, we have (1 +a)/2T =Ww.

x,. (t) of (3.13) will be
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cos(zmat/T) . ¢
X.. (f) = %Slnc [?] (3 14)

The plots of X (f) andx_(¢) for three different values of & =0, 0.5, 1 are given in Fig. 3.2. It is
worth noting that o = 0 corresponds to the case of (highest signalling rate) 1/T = 2W , thus here

X, (t) turns into a sinc function. But at « =1, signalling rate is lowered to 1/T = W as seen from

Fig. 3.1c. Fig. 3. 2b reveals that decay in the tails of x_ (t) accelerates as « approaches unity,
confirming that a raised cosine shape is a better confined waveform than a sinc pulse. It is important

to realize that X (f) of (3.13) is normalized in the sense that its integration over the whole range

of frequencies (also when confined to |f|<W) is equal to unity. Furthermore Xx_ (t) is also

normalized for ¢t = 0 such that

00 w

X, (f)df =[x (f)df =1, x (t=0)=1 (3.15)
—o0 —-w

The instance of ¢ = 0 also means the shifted sampling instances of t = mT .
Now suppose that we have a bandlimited rectangular channel such that

! e

0 otherwise

C(f)= (3.16)

Then the raised cosine functionality is shared between the transmitter and receiver filters which
means

X (f)=G.(f)G.(f) (3.17)

/ N\ a=0 7
=05 N \ ~ W=05/T
08T W=075/T / i

1 // \ e 11 /T
0.2TH- \ i
/

—_ S f : —_ —_
-9.5/T -1/T -05/T 0 05/T 1/7T 15/T

-

a) Plot of X (f)
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a=0.5
W=075/T

XI'C( t)

a) Plot of x_ (t)

Fig. 3.2 The plots of X, (/) and x_(¢) for « =0, 0.5, 1.

In  particular, if the receiver filter is matched to transmitter filter, i.e.
G, (f)=G,(f)exp(—2/7fT,), then
X, ()=, (1) (3.13)

(3.18) can alternatively be expressed as

() =X, (f)exp(—2/7/T.) (3.19)

Under these circumstances, the raised cosine functionality is split evenly between the transmitter
and the receiver filters.

4. Signal Design for Partial ISI

From the analysis of previous section, it is seen that in order to have zero ISI, we need 1/T < 2W .
Recognizing that 1/T corresponds to symbol rate, we wonder if it is possible to achieve exactly
1/T = 2W symbol rate by allowing partial ISI. One such possibility is given below.

1 n=0,1
x(nT) = .
0 otherwise
T n=0, —1
z = ) 4.1)
0 otherwise
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The z, equivalence on the second line of (4.1) is written using (3.8). Now by benefiting from (3.7), we

obtain

Z(f)=T +Texp(—j27/T)

Inserting into 7' =1/2W into (4.2) and converting to X(f), we get

1 jrf
—— |14 Texp| ——~ <W
T
0 otherwise
—exp[—ﬂ]cos ﬁ] |f|§W
=W 2w 2w
0 otherwise

By inverse Fourier transform, x(t)will be
x(¢)=sinc(2Wt)+-sinc (2w —1)

X(f) and x(t)given in (4.3) and (4.4) are plotted in Fig. 4.1.

(4.2)

(4.3)

4.4)

In the literature, there exist other partial ISI formulations. Here we terminate this topic.
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x(t)

Fig. 4.1 The plots of X(f) and x(t) in partial ISl of (4.3) and (4.4).

5. Signal Design in Presence of Channel Distortion

As proven in the last section, for ISI free transmission over a channel, it must be that
X, (f)exp(=2jzfT) =G, (f)C(f)G.(f) CRY)

where T is a time delay to ensure the physical realizability of the transmitter and receiver filters.
Here the critical element is the channel response, since G, (/) and G, (/') are in our control. There
may be two cases forC(f). The first case would be C(f) does not change with time, so once

measured, we gain a knowledge of it. Then our system can safely be designed according (5.1). In the

second case, C(f) changes with time, then (5.1) has to be modified.

The characteristics of C(f) can be visualized in terms of amplitude and phase. This means,
amplitude distortion of the transmitted signal will occur if ‘C(f)‘ is f dependent within the

passband of |f|§W. Similarly if the phase response G)(f) is not linear with f°, then phase
distortion will occur as well. For instance a phase response like the one shown in Fig. 1.2 is a linear

one, since it can be expressed as @(f) = —27[]71 . In time domain this corresponds to a simple time

delay of 7. On the other hand, the phase response of a RC low pass filter will be nonlinearin f".

Assume that we know the channel response in advance, thus we distribute the raised cosine
functionality between the transmitter and receiver filters as

G, (f)z?T(;)eXp(—UﬂfTs) G ()= x0T 52
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At receiver, signal and noise will both pass through the receiver filter with a response of G, (f) In

this configuration, since G, (f) does not contain any channel dependence, no performance
degradation seems to emerge on the receiver side. But on the transmitter side, the transmitter filter

G, (f) is inversely channel response related. Hence if C(f) <1 for |f| < W, then the transmitter
filter will have to provide gain compared with the case of C(f) =1 for |f| < W . On the other hand
when C(f) <1 for |f| < W, transmitter filter will have to introduce distortion into the transmitted

signal. In summary we will experience performance loos, when and if C(f) <1 for |f| <w.

From (1.6), (1.7) and (3.15), for a noise spectral density input of S (f) =N, /2, the noise power at

the output of the receiver filter will be

B=[S(NG (N dr =2 [x,(f) df =2 (5.3)

Example 5.1 : Determine the transmitter and receiver filter responses for a communication system
that transmits a rate of 1/7 = 4800 symbols/sec over a channel which has magnitude response of

;2 for |f|§W
C()=11+(s/w) (5.4)

0 otherwise

where W = 4800 Hz .

Solution : From the given quantities, we see that 1/7 = W, indicating that a raised cosine filter of
(rolloff factor) @ =1 is to be used. So from (3.13) and (5.2) we have

X, (f)z%[l—l—COS(ﬂTUD]:Tcos2 [M]

2 S
VX)) T[1+(f/W) }COS[%] for | /| < W

=iy

0 otherwise

\/T COS

z|f]
%] for | 7]<w (5.5)

0 otherwise

G

T

The plots of ‘C(f)

X (f),

(f)‘ and G, (f) for Example 5.1 are given below in Fig. 5.1
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c(f) X (f)

Ti
-1
\f
0 w -w 0
G, (f)
G (f NT —— R
VT —— )
\f |
0 w -w [}
, X

(f),

-w

G

Fig. 5.1 Plots of ‘C(f) ", (f)‘ and G, (f) for Example 5.1.

Exercise 5.1 : Repeat Example 5.1 for the case that the channel has rectangular response, that is

L e
C(f)= 5.6
) 0 otherwise -0
Find and make plots of ‘C(f) , X.(f). |G, (f)‘ and G, (f) for this case. Compare your findings

with those of Example 5.1.

If the channel response is unknown beforehand, thus we measure it on the receiver side (at intervals
if required) and incorporate some compensation mechanism of the channel characteristics outside of
receiver filter, then we modify (5.2) as follows

G (f)=yX.(f)exp(=2jx[T) . G,(f)=X,.(f)
1 _exp[-jO(f)]
ctr) et

G, (f)= (5.7)

As seen on the second line of (5.7), we have introduced an equalizer with a response of G, (f) which

is set to the inverse of the channel, magnitude and phasewise. Hence G, (f) equalizes amplitude as

well phase distortions. Such an equalizer is known as zero forcing equalizer. The adopted block
diagram of a system with an equalizer is shown in Fig. 5.2.
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Transmitter filter | v(t) | Channel r(t) | Receiver filter y(t) | Equalizer y (kT)

—_— > ——> > >
Message |97 (1) Gr() c(t),C(f) gg (1), G (f) 9e (1), G ()

signal

Detector —

Demodulated signal

Noise

n(t)

Fig. 5.2 Block diagram of a system with an equalizer.

Now if we carry out an analysis similar to (1.6) and (1.7), for a noise spectral density input of

S, (f) = N, /2, we find the noise power at the output of equalizer as

. oy
E=[8.(0G.Tl6 )] ar== L[V‘sz‘} & 59

We know from (3.15) that the integration of the raised cosine function over the whole bandwidth

specified by the channel response is unity, but ifC(f) <1 for |f| < W, then the noise at the output

of zero forcing equalizer will be higher than the case of (5.3) where the channel characteristics are
known and hence incorporated into the transmitter filter.

Example 5. 2 : By taking the channel response given in (5.4) of Example 5.1, determine the noise
power given in (5.7).

Solution : By inserting into (5.8) for C(f)from (5.4), we have

P = NTZVT 1+ (f/W)z}cos2 [%] df :Nojw(l +x*)cos’ [%] dx=0565N,  (5.9)

Note that 0.565N, is slightly larger than 0.5/, .

6. Equalizers

Initially we want construct a model of ISI created at receiver of a bandlimited channel. For this, we
rewrite the output of the receiver filter from (2.13) as

00

y(t)=>" ax(t—nT)+n(t) (6.1)

n=-—00
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where x(t) is the cascaded impulse responses of transmitter filter, channel and receiver filter, thus
x(t) =g, (t)*c(t)*gR (t) and 77(1‘) is the noise at the output of the receiver filter, so

n(t) = n(t)*gR (t) . After sampling at t = mT , we have

Y, =Xx,a, + i ax +n ,m=0, £, £2-- (6.2)

n=—o00
n=m

The middle term in (6.2) represents ISI. In a practical system, the summation for this term extends

only over finite number of terms. Denoting the lower (negative) limit of this new summation by —L,

the upper limit by L, , the desired symbol term (first term of (6.2)) and the ISI term can be expressed

as

0 L
xoam + Z anxmfn ~ Z xkamfk > L = Ll +L2

k=—11

(6.3)

n=-—00
n=m

(6.3) can be modelled by discrete time channel filter as shown in Fig. 6.1 (copied from Proakis 2002).

': e M _.'

- T - T .sa » T — ses - T }_
L t_ F L L b
L Lo+l -, 1oy Pt P A Fame "'..I'._. T,
e o —_— —_— {L«') | x‘) —_—
N N A . L -
. "’-F.I [
ot
L .
':"'JL]:‘I.II=E‘.':-:’J|..i "

-1

Fig. 6.1 Discrete time channel filter representation.

The boxes in Fig. 6.1 containing the letter 7" inside are the FIR filters with delays of 7 each. Now to
equalize such an output of receiver filter, we propose an equalizer whose construction is inspired by
the representation in Fig. 6.1. As shown in Fig. 6.2 (copied from Proakis 2002), our equalizer will
consist of FIR filters whose outputs are multiplied by ¢, tap coefficients (only five are shown in Fig.

6.2) and summed, thus the impulse response of the equalizer

N

> ¢, 6(t—nr)

n=—N

g ()= (6.4)

The corresponding frequency response of the equalizer is
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G, (f)= EN: ¢, exp(—j2rx fnr) (6.5)

n=—N
In Fig. 6.2, 7 represents the tab spacing, selected to be 7 < T, thus said to be at fractional spacing. It
is presumed that 2N +1> L number of equalizer coefficients are sufficient to span the entire ISI
space. As indicated in (2.4) and Fig. 5.1, the signal input to the equalizer is x(l‘), then with the

responses given in (6.4) and (6.5), the output from the equalizer becomes
N

q(t)="3 cx(t—nr) (6.6)

n=—N

After sampling at t = mT and forcing zero ISI condition, we get

N 1 m=0
mT )= cx(ml —nt 6.7
q( ) n;V ! ( ){O m==+1, £2--, £N ©7
Expressed in a matrix form, (6.7) means
q=Xc (6.8)

Unequalized
input

b
N

B
(%)
i

-
g
b

Equalized
:‘- - output

Algorithm for tap
gain adjustment -

Fig. 6. 2 Diagram of an equalizer with five tabs.

In (6.8), qis a column vector whose upper and lower N rows are zero with the (N—I—l) th row being
unity. This way the zero ISI condition (6.7) is satisfied. X is a matrix of (2N+1)><(2N—|—1) obtained

by sampling x(t)at intervals of mT —nr . Finally cis a column vector for the ¢, tap coefficients

whose values are to be determined according to the zero ISI condition over a symbol span of length

(2N+1) from ¢e=X"q.

Example 6.1 A channel distorted pulse of x(t) prior to equalizer is given as follows
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1
C1+(2¢/7)

x(1)

(6.9)

The tap spacing is arranged to be at 7=17T/2, while the sampling is carried out at t=mT .

Determine the ¢, tap coefficients, i.e. column vector ¢, if the number of taps is five, i.e.
2N +1=5.

Solution : To construct X, we use x(mT—m'):x(mT—nT/Z) and run m as the row index, n
as the column index in the range —2, —1, 0,1, 2 and insert such found arguments of

t=mT —nT/2 into (6.9) and evaluate x(t) . This way, X matrix will become

n—-2 -1 0 | 2 m

!
r 1 1 1 1)-=2
5 10 17 26 37
IR S S U
2 5 10 17
X:lllllo (6.10)
5 2 2 5
1 1 1 1
— — = = 1| 1
17 10 5 2
21 1 11
37 26 17 10 2

Since a five tab equalizer is requested, then column matrix for qvector is

0
0
q=|1 (6.11)
0
0
The tab coefficients then become
—2.2
4.9
c=X'q=| -3 (6.12)
4.9
—2.2
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To check how much equalization is achieved by (6.12), we carry out the following computation which
can be found in Q1_FE_26052014.m.

4T
The sum of x(¢) in the range t =—4T up to t =4T : E, = > x(t,r=T/2)
(——4T
T
The sum of x(¢) in the range (five tab) t =—T uptot =T :E, =Y x(t,7=T/2)

t=-T

Equalization Ratio for five tap R= E, / E, =0.8221
Equalization Ratio for seventap R= E_ /E, =0.8906 (6.13)

Note that because of the symmetry in (6.9), the tab coefficients in (6.12) have come out to be

symmetrical. To compute X' from a given X, in Matlab we simply use the operator inv, thus
X' =inv(X) .

It is easy to see in the use of the equalizer, since G, (f) = 1/C(f), the equalizer will have to act as

a high gain amplifier if C(f) <1 . Then there will be an accumulation of excess amount of noise.

Then we can use an equalization strategy based on minimum mean square error (MMSE) that tries to
equalize signal plus noise together rather than signal alone as described above.

Exercise 6. 1 : By changing the number of tap coefficients to 2N +1=13, 7, recalculate c.

Exercise 6. 2 : By changing x(t) to the followings and keeping the number of tap coefficients at five,

recalculate ¢ .

1
x(t)= 1+(¢/T)
1
Exercise 6. 3 : Now take 7 =T and repeat the calculations in Example 6.1.
Exercise 6. 4 : Bearing in mind the following relations, for the given x(t) in Example 6.1
X()=G (NG 6= 5
G, (f)=X,.(f)exp(=2jzT) . G,(f)=yX.(f)
GE(f):);“((ff))exp(—2j7zﬂ) , X(f)=F[x(t)] (6.15)

find G, (f) and establish its relevance to (6.5)
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